Showing posts with label Brain. Show all posts
Showing posts with label Brain. Show all posts

NTHE is a four letter word

SUBHEAD: Near Term Human Extinction may be coming after a few of us get through the eco-bottleneck.

By Albert Bates on 25 March 2018 for The Great Change -
(http://peaksurfer.blogspot.com/2018/03/nthe-is-four-letter-word.html)


Image above: Illustration of a cityscape post near term human extinction. From (http://thefallingdarkness.com/near-term-human-extinction-a-conversation-with-guy-mcpherson/).

"Collective neurosis can be attributed to a concatenation of causes — diet, electrosmog, epigenetic triggering by microplastics in our toothpaste — take your choice."

We are not talking about climate deniers now, who have their own brand of insanity, but we keep hearing the same mantra chanted by otherwise respectable scientists and policymakers that, “climate change may be catastrophic but it won’t be the end of us.”

We hear that so often we almost never challenge it, not wishing to divert an otherwise productive conversation into what we know to be a blind alley. Nonetheless, we think the statement is at best deluded and at worst just a milder form of denialism. It is not science. It is faith. It is also human neurophysiology.
Brain imaging research has shown that a major neural region associated with cognitive flexibility is the prefrontal cortex — specifically two areas known as the dorsolateral prefrontal cortex (dlPFC) and the ventromedial prefrontal cortex (vmPFC). Additionally, the vmPFC was of interest to the researchers because past studies have revealed its connection to fundamentalist-type beliefs. For example, one study showed individuals with vmPFC lesions rated radical political statements as more moderate than people with normal brains, while another showed a direct connection between vmPFC damage and religious fundamentalism. For these reasons, in the present study, researchers looked at patients with lesions in both the vmPFC and the dlPFC, and searched for correlations between damage in these areas and responses to religious fundamentalism questionnaires.
Bobby Azarian, Raw Story, March 14, 2018

In the quote above, Azarian is referring to a study published a year ago in Neuropsychologia that connected cognitive flexibility with the ventromedial prefrontal cortex and proved that damage to that part of the brain hinders adaptive or flexible behavior, locking out world views that run contrary to some preconception. The study correlated brain-damaged veterans with religious fundamentalism.

The preconception most often grasped by NTHE (Near Term Human Extinction ) deniers is the notion that “humans survived far worse cataclysms to arrive at their present condition” —  the Toba event 70,000 years ago, for instance, when the human population was reduced to perhaps 10,000–30,000 individuals — “and we invariably rebound.”

The example most often cited is the 2005 Rutgers mDNA study showing all pre-1492 native populations of the Americas  —  well over 1 billion by some estimates  —  having descended from 70 or fewer individuals who crossed the land bridge between Asia and North America.

This is a variant of the techno-cornucopianism of Bill Gates or Elon Musk, but in their cases — building new desert cities in Arizona or seed colonies on Mars — that being externalized, absent a cold fusion Spindletop, is biophysical economics.

We have previously reviewed the hypothesis of Danny Brower and Ajit Varki that an evolutionary leap allowed homo to access higher consciousness by hard-wiring a neural pathway for denying reality.

Arguably that same pathway induces otherwise rational-seeming people to allow for the possibility of catastrophic climate change (already well underway) while denying the possibility of it leading to near-term human extinction (NTHE).

In our view, this colors the debate over what we should be doing by reducing the urgency.

Ironically there may have been human genotypes that suppressed their denial gene better than ours does. One of the effects of genetic bottlenecks is that selected genes (such as those offering a more balanced use of denial) fail to be passed along to succeeding populations.

Our personal view is that while we think NTHE can yet be avoided, the time for action grows short and as we as we walk out onto the razon’s edge and grow more desperate we will likely make many foolish mistakes, any one of which could trigger NTHE.

Appointing John Bolton the National Security Advisor, for instance. In 2016 USAnians fed up with the tweedledee-tweedledum two-party system opted to just hurl a hand grenade into the White House and stand back.

If one grenade was not enough, we still have President Bannon to look forward to in 2020 or 2024 if Cambridge Analytica can keep up with the AI revolution with respect to Big Data.

Collective neurosis can be attributed to a concatenation of causes — diet, electrosmog, epigenetic triggering by microplastics in our toothpaste — take your choice. Visionary forebears who saw these bottlenecks coming — Garrett Hardin, R. Buckminster Fuller, M. King Hubbert — all argued that the best antidote was better public education.

But at least in the US, public education was hijacked in the ‘90s by the vmPFC-lesioned hoards of Zombie Fundamentalists before being handed over to Betsy DeVoss for the final coup d’gras.

Whatever long wave or ergot diet issued humanity into the Dark Ages seems to be replaying now, and it could hardly arrive at a worse time from the standpoint of the organized climate solutioneering required to avert Anthropogenic NTHE.

We need to be in top form to survive this next bottleneck. We’d do better without the denial. Too bad climate scientists can’t afford to hire Cambridge Analytica themselves.

.

Your brain doesn't contain memories

SUBHEAD: It allows you to integrate something from its past into its future to respond the new.

By Nick Stockton on 19 July 2017 for Wired Magazine -
(https://www.wired.com/story/your-brain-is-memories/)


Image above: DSetail of illustration of human brain function. From (https://www.wtfclub.net/brain-facts/).

Recall your favorite memory: the big game you won; the moment you first saw your child's face; the day you realized you had fallen in love. It's not a single memory, though, is it? Reconstructing it, you remember the smells, the colors, the funny thing some other person said, and the way it all made you feel.

Your brain's ability to collect, connect, and create mosaics from these milliseconds-long impressions is the basis of every memory. By extension, it is the basis of you. This isn't just metaphysical poetics. Every sensory experience triggers changes in the molecules of your neurons, reshaping the way they connect to one another.

That means your brain is literally made of memories, and memories constantly remake your brain. This framework for memory dates back decades. And a sprawling new review published today in Neuron adds an even finer point: Memory exists because your brain’s molecules, cells, and synapses can tell time.

Defining memory is about as difficult as defining time. In general terms, memory is a change to a system that alters the way that system works in the future.

"A typical memory is really just a reactivation of connections between different parts of your brain that were active at some previous time," says neuroscientist Nikolay Kukushkin, coauthor of this paper. And all animals—along with many single-celled organisms—possess some sort of ability to learn from the past.

Like the sea slug. From an evolutionary perspective, you'd have a hard time drawing a straight line from a sea slug to a human. Yet they both have neurons, and sea slugs form something similar to memories.

If you pinch a sea slug on its gills, it will retract them faster the next time your cruel little fingers come close. Researchers found synapse connections that strengthen when the sea slug learns to suck in its gills, and molecules that cause this change. Remarkably, human neurons have similar molecules.

So what's that got to do with your favorite memory? "What is unique about neurons is they can connect to thousands of other neurons, each very specifically," says Kukushkin.

And what makes those connections a network is the fact that those specific connections, those synapses, can be adjusted with stronger or weaker signals. So every experience—every pinch to the gills—has the potential to reroute the relative strengths of all those neuronal connections.

But it would be a mistake to believe that those molecules, or even the synapses they control, are memories.

"When you dig into molecules, and the states of ion channels, enzymes, transcription programs, cells, synapses, and whole networks of neurons, you come to realize that there is no one place in the brain where memories are stored," says Kukushkin. This is because of a property called plasticity, the feature of neurons that memorize. The memory is the system itself.

And there's evidence of memory-making throughout the tree of life, even in creatures with no nervous system—scientists have trained bacteria to anticipate a flash of a light. Kukushkin explains that primitive memories, like the sea slug's response, are advantageous on an evolutionary scale. "It allows an organism to integrate something from its past into its future and respond to new challenges," he says.

Human memories—even the most precious—begin at a very granular scale. Your mother's face began as a barrage of photons on your retina, which sent a signal to your visual cortex. You hear her voice, and your auditory cortex transforms the sound waves into electrical signals. Hormones layer the experience with with context—this person makes you feel good.

These and a virtually infinite number of other inputs cascade across your brain. Kukushkin says your neurons, their attendant molecules, and resultant synapses encode all these related perturbations in terms of the relative time they occurred. More, they package the whole experience within a so-called time window.

Obviously, no memory exists all by itself. Brains break down experience into multiple timescales experienced simultaneously, like sound is broken down into different frequencies perceived simultaneously. This is a nested system, with individual memories existing within multiple time windows of varying lengths.

And time windows include every part of the memory, including molecular exchanges of information that are invisible at the scale you actually perceive the event you are remembering.
Yes, this is very hard for neuroscientists to understand too. Which means it's going to be a long time before they understand the nuts and bolts of memory formation.

"In an ideal world, we would be able to trace the behavior of each individual neuron in time," says Kukushkin. At the moment, however, projects like the Human Connectome represent the cutting edge, and they are still working on a complete picture of the brain at a standstill. Like memory itself, putting that project into motion is all a matter of time.


.