Renewables - the New Fracking?

SUBHEAD: We each can let go of the absurd extravagances of the industrial age deliberately, while we can do it with some measure of grace.

By John Michael Greer on 10 February 2016 for the Archdruid Report-

Image above: Windmill farm near Troy in Bradford County, PA, showing a gas drillng fracking fluids reservoir. From (

I'd meant this week’s Archdruid Report post to return to Retrotopia, my quirky narrative exploration of ways in which going backward might actually be a step forward, and next week’s post to turn a critical eye on a common but dysfunctional habit of thinking that explains an astonishing number of the avoidable disasters of contemporary life, from anthropogenic climate change all the way to Hillary Clinton’s presidential campaign.

Still, those entertaining topics will have to wait, because something else requires a bit of immediate attention.

In my new year’s predictions a little over a month ago, as my regular readers will recall, I suggested that photovoltaic solar energy would be the focus of the next big energy bubble. The first signs of that process have now begun to surface in a big way, and the sign I have in mind—the same marker that provided the first warning of previous energy bubbles—is a shift in the rhetoric surrounding renewable energy sources.

Broadly speaking, there are two groups of people who talk about renewable energy these days.

The first group consists of those people who believe that of course sun and wind can replace fossil fuels and enable modern industrial society to keep on going into the far future.

The second group consists of people who actually live with renewable energy on a daily basis. It’s been my repeated experience for years now that people belong to one of these groups or the other, but not to both.

As a general rule, in fact, the less direct experience a given person has living with solar and wind power, the more likely that person is to buy into the sort of green cornucopianism that insists that sun, wind, and other renewable resources can provide everyone on the planet with a middle class American lifestyle.

Conversely, those people who have the most direct knowledge of the strengths and limitations of renewable energy—those, for example, who live in homes powered by sunlight and wind, without a fossil fuel-powered grid to cover up the intermittency problems—generally have no time for the claims of green cornucopianism, and are the first to point out that relying on renewable energy means giving up a great many extravagant habits that most people in today’s industrial societies consider normal.

 Debates between members of these two groups have enlivened quite a few comment pages here on The Archdruid Report.

Of late, though—more specifically, since the COP-21 summit last December came out with yet another round of toothless posturing masquerading as a climate agreement—the language used by the first of the two groups has taken on a new and unsettling tone.

Climate activist Naomi Oreskes helped launch that new tone with a diatribe in the mass media insisting that questioning whether renewable energy sources can power industrial society amounts to “a new form of climate denialism.” The same sort of rhetoric has begun to percolate all through the greenward end of things: an increasingly angry insistence that renewable energy sources are by definition the planet’s only hope, that of course the necessary buildout can be accomplished fast enough and on a large enough scale to matter, and that no one ought to be allowed to question these articles of faith.

There are plenty of points worth making about what this sort of rhetoric implies about the current state of the green movement, and I’ll get to some of those  shortly, but the issue that comes first to mind—typically enough for this blog—is a historical one: we’ve been here before.

When this blog first got going, back in 2006, the energy resource that was sure to save industrial civilization from the consequences of its own bad decisions was biofuels.

Those of my readers who were paying attention to the peak oil scene in those days will remember the grandiose and constantly reiterated pronouncements about the oceans of ethanol from American corn and the torrents of biodiesel from algae that were going to sweep away the petroleum age and replace fossil fuels with all the cheap, abundant, carbon-neutral liquid fuel anyone could want.

Those who raised annoying questions—and yes, I was one of them—got reactions that swung across a narrow spectrum from patronizing putdowns to furious denunciation.

As it turned out, of course, the critics were right and the people who insisted that biofuels were going to replace petroleum and other fossil fuels were dead wrong. There were at least two problems, and both of them could have been identified—and in fact were identified—well in advance, by that minority who were willing to take a close look at the underlying data.

The first problem was that the numbers simply didn’t work out. It so happens, for example, that if you grow corn using standard American agricultural methods, and convert that corn into ethanol using state of the art industrial fermenters and the like, the amount of energy you have to put into that whole process is more than you get by burning the resulting ethanol.

Equally, it so happens that if you were to put every square inch of arable farmland in the world into biofuel crops, leaving none for such trivial uses as feeding the seven billion human beings on this planet, you still wouldn’t get enough biofuel to replace the world’s annual consumption of transportation fuels.

Neither of these points were hard to figure out, and the second one was well known in the appropriate tech scene of the 1970s—you’ll find it, for example, in the pages of William Catton’s must-read book Overshoot—but somehow the proponents of ethanol and biodiesel missed it.

The second problem was a little more complex, but not enough so to make it impossible to figure out in advance. This was that the process of biofuel production and consumption had impacts of its own.

Divert a significant fraction of the world’s food supply into the fuel tanks of people in a handful of rich countries—and of course this is what all that rhetoric about fueling the world amounted to in practice—and the resulting spikes in food prices had disastrous impacts across the Third World, triggering riots and quite a number of countries and outright revolutions in more than one.

Meanwhile rain forests in southeast Asia got clearcut so that palm oil plantations could supply the upper middle classes of Europe and America with supposedly sustainable biodiesel.

 It could have gotten much worse, except that the underlying economics were so bad that not that many years into the biofuels boom, companies started going broke at such a rate that banks stopped lending money for biofuel projects; some of the most highly ballyhooed algal biodiesel projects turned out to be, in effect, pond scum ponzi schemes; and except for those enterprises that managed to get themselves a cozy spot as taxpayer-supported subsidy dumpsters, the biofuel boom went away.

It was promptly replaced by another energy resource that was sure to save industrial civilization. Yes, that would be hydrofracturing of oil- and gas-bearing shales, or to give it its popular moniker, fracking.

For quite a while there, you couldn’t click through to an energy-related website without being assailed with any number of grandiose diatribes glorifying fracking as a revolutionary new technology that, once it was applied to vast, newly discovered shale fields all over North America, was going to usher in a new era of US energy independence.

Remember the phrase “Saudi America”? I certainly do.

Here again, there were two little problems with these claims, and the first was that once again the numbers didn’t work out.

Fracking wasn’t a new technological breakthrough—it’s been used on oil fields since the 1940s—and the “newly discovered” oil fields in North Dakota and elsewhere were nothing of the kind; they were found decades ago and the amount of oil in them, which was well known to petroleum geologists, did not justify the wildly overinflated claims made for them.

There were plenty of other difficulties with the so-called “fracking revolution,” including the same net energy issue that ultimately doomed the “biodiesel revolution,” but we can leave those for now, and go on to the second little problem with fracking. 

This was the awkward fact that the fracking industry, like the biodiesel industry, had impacts of its own that weren’t limited to the torrents of new energy it was supposed to provide.

All across the more heavily fracked parts of the United States, homeowners discovered that their tap water was so full of methane that they could ignite it with a match, while some had to deal with the rather more troubling consequences of earthquake swarms and miles-long trains of fracked fuels rolling across America’s poorly maintained railroad network.

Then there was the methane leakage into the atmosphere—I don’t know that anybody’s been able to quantify that, but I suspect it’s had more than a little to do with the abrupt spike in global temperatures and extreme weather events over the last decade.

Things might have gotten much worse, except here again the underlying economics of fracking were so bad that not that many years into the fracking boom, companies have started going broke at such a rate that banks are cutting back sharply on lending for fracking projects.

As I write this, rumors are flying in the petroleum industry that Chesapeake Petroleum, the biggest of the early players in the US fracking scene, is on the brink of declaring bankruptcy, and quite a few very large banks that lent recklessly to prop up the fracking boom are loudly proclaiming that everything is just fine while their stock values plunge in panic selling and the rates other banks charge them for overnight loans spike upwards.

Unless some enterprising fracking promoter figures out how to elbow his way to the government feed trough, it’s pretty much a given that fracking will shortly turn back into what it was before the current boom: one of several humdrum technologies used to scrape a little extra oil out from mostly depleted oil fields.

That, in turn, leaves the field clear for the next overblown “energy revolution” to be rolled out—and my working ghess is that the focus of this upcoming round of energy hype will be renewable energy resources: specifically, attempts to power the electrical grid with sun and wind

In a way, that’s convenient, because we don’t have to wonder whether the two little problems with biofuels and fracking also apply to this application of solar and wind power. That’s already been settled; the research was done quite a while ago, and the answer is yes. To begin with, the numbers are just as problematic for solar and wind power as they were for biofuels and fracking.

Examples abound: real world experience with large-scale solar electrical generation systems, for example, show dismal net energy returns; the calculations of how much energy can be extracted from wind that have been used to prop up windpower are up to two orders of magnitude too high; more generally, those researchers who have taken the time to crunch the numbers—I’m thinking here especially, though not only, of Tom Murphy’s excellent site Do The Math—have shown over and over again that for reasons rooted in the hardest of hard physics, renewable energy as a source of grid power can’t live up to the sweeping promises made on its behalf.

Equally, renewables are by no means as environmentally benign as their more enthusiastic promoters claim.

It’s true that they don’t dump as much carbon dioxide into the atmosphere as burning fossil fuels do—and my more perceptive readers may already have noted, by the way, the extent to which talk about the very broad range of environmental blowbacks from modern industrial technologies has been supplanted by a much narrower focus on greenhouse gas-induced anthropogenic global warming, as though this is the only issue that matters.

But the technologies needed to turn sun and wind into grid electricity involve very large volumes of rare metals, solvents, plastics, and other industrial products that have substantial carbon footprints of their own.

And of course there are other problems of the same kind, some of which are already painfully clear.

A number of those rare metals are sourced from open-pit mines in the Third World worked by slave labor; the manufacture of most solvents and plastics involves the generation of a great deal of toxic waste, most of which inevitably finds its way into the biosphere; wind turbines are already racking up an impressive death toll among birds and bats—well, I could go on.

Nearly all of modern industrial society’s complex technologies are ecocidal to one fairly significant degree or another, and the fact that a few of them extract energy from sunlight or wind doesn’t keep them from having a galaxy of nasty indirect environmental costs.

Thus the approaching boom in renewable energy will inevitably bring with it a rising tide of ghastly news stories, as corners get cut and protections overwhelmed by whatever degree of massive buildout gets funded before the dismal economics of renewable energy finally take their inevitable toll.

To judge by what’s happened in the past, I expect to see plenty of people who claim to be concerned about the environment angrily dismissing any suggestion that the renewable energy industry has anything to do with, say, soaring cancer rates around solar panel manufacturing plants, or whatever other form the inevitable ecological blowback takes.

The all-or-nothing logic of George Orwell’s invented language Newspeak is astonishingly common these days: that which is good (because it doesn’t burn fossil fuels) can’t possibly be ungood (because it isn’t economically viable and also has environmental problems of its own), and to doubt the universal goodness of what’s doubleplusgood—why, that’s thoughtcrime...

Things might get very ugly indeed, all things considered, except that the underlying economics of renewable energy as a source of grid electricity aren’t noticeably better than those of fracking or corn ethanol.

Six to ten years down the road, as a result, the bankruptcies and defaults will begin, banks will start backing away from the formerly booming renewables industry, and the whole thing will come crashing down, the way ethanol did and fracking is doing right now.

That will clear the way, in turn, for whatever the next energy boom will be—my guess is that it’ll be nuclear power, though that’s such a spectacular money-loser that any future attempt to slap shock paddles on the comatose body of the nuclear power industry may not get far.

It probably needs to be said at this point that one blog post by an archdruid isn’t going to do anything to derail the trajectory just sketched out. Ten thousand blog posts by Gaia herself, cosigned by the Pope, the Dalai Lama, and Captain Planet and the Planeteers probably wouldn’t do the trick either.

I confidently expect this post to be denounced furiously straight across the green blogosphere over the next couple of weeks, and at intervals thereafter; a few years from now, when dozens of hot new renewable-energy startups are sucking up million-dollar investments from venture capitalists and planning their initial IPOs, such few references as this and similar posts field will be dripping with patronizing contempt; then, when reality sets in, the defaults begin and the banks start backing away, nobody will want to talk about this essay at all.

It probably also needs to be pointed out that I’m actually very much in favor of renewable energy technologies, and have discussed their importance repeatedly on this blog.

The question I’ve been trying to raise, here and elsewhere, isn’t whether or not sun and wind are useful power sources; the question is whether it’s possible to power industrial civilization with them, and the answer is no.

That doesn’t mean, in turn, that we’ll just keep powering industrial civilization with fossil fuels, or nuclear power, or what have you.

Fossil fuels are running short—as oilmen like to say, depletion never sleeps—and nuclear power is a hopelessly uneconomical white-elephant technology that has never been viable anywhere in the world without massive ongoing government subsidies.

Other options? They’ve all been tried, and they don’t work either.

The point that nearly everyone in the debate is trying to evade is that the collection of extravagant energy-wasting habits that pass for a normal middle class lifestyle these days is, in James Howard Kunstler’s useful phrase, an arrangement without a future.

Those habits only became possible in the first place because our species broke into the planet’s supply of stored carbon and burnt through half a billion years of fossil sunlight in a wild three-century-long joyride.

Now the needle on the gas gauge is moving inexorably toward that threatening letter E, and the joyride is over. It really is as simple as that.

Thus the conversation that needs to happen now isn’t about how to keep power flowing to the grid; it’s about how to reduce our energy consumption so that we can get by without grid power, using local microgrids and home-generated power to meet sharply reduced needs.

We don’t need more energy; we need much, much less, and that implies in turn that we—meaning here especially the five per cent of our species who live within the borders of the United States, who use so disproportionately large a fraction of the planet’s energy and resources, and who produce a comparably huge fraction of the carbon dioxide that’s driving global warming—need to retool our lives and our lifestyles to get by with the sort of energy consumption that most other human beings consider normal.

Unfortunately that’s not a conversation that most people in America are willing to have these days. The point that’s being ignored here, though, is that if something’s unsustainable, sooner or later it will not be sustained.

We can—each of us, individually—let go of the absurd extravagances of the industrial age deliberately, while there’s still time to do it with some measure of grace, or we can wait until they’re pried from our cold and stiffening fingers, but one way or another, we’re going to let go of them.

The question is simply how many excuses for delay will be trotted out, and how many of the remaining opportunities for constructive change will go whistling down the wind, before that happens.

No comments :

Post a Comment